skip to main content


Search for: All records

Creators/Authors contains: "Waller, Laura"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently developed iterative and deep learning-based approaches to computer-generated holography (CGH) have been shown to achieve high-quality photorealistic 3D images with spatial light modulators. However, such approaches remain overly cumbersome for patterning sparse collections of target points across a photoresponsive volume in applications including biological microscopy and material processing. Specifically, in addition to requiring heavy computation that cannot accommodate real-time operation in mobile or hardware-light settings, existing sampling-dependent 3D CGH methods preclude the ability to place target points with arbitrary precision, limiting accessible depths to a handful of planes. Accordingly, we present a non-iterative point cloud holography algorithm that employs fast deterministic calculations in order to efficiently allocate patches of SLM pixels to different target points in the 3D volume and spread the patterning of all points across multiple time frames. Compared to a matched-performance implementation of the iterative Gerchberg-Saxton algorithm, our algorithm’s relative computation speed advantage was found to increase with SLM pixel count, reaching >100,000x at 512 × 512 array format.

     
    more » « less
  2. Fourier ptychographic microscopy is a computational imaging technique that provides quantitative phase information and high resolution over a large field-of-view. Although the technique presents numerous advantages over conventional microscopy, model mismatch due to unknown optical aberrations can significantly limit reconstruction quality. A practical way of correcting for aberrations without additional data capture is through algorithmic self-calibration, in which a pupil recovery step is embedded into the reconstruction algorithm. However, software-only aberration correction is limited in accuracy. Here, we evaluate the merits of implementing a simple, dedicated calibration procedure for applications requiring high accuracy. In simulations, we find that for a target sample reconstruction error, we can image without any aberration corrections only up to a maximum aberration magnitude ofλ/40. When we use algorithmic self-calibration, we can tolerate an aberration magnitude up toλ/10 and with our proposed diffuser calibration technique, this working range is extended further toλ/3. Hence, one can trade off complexity for accuracy by using a separate calibration process, which is particularly useful for larger aberrations.

     
    more » « less
  3. Lensless imaging provides opportunities to design imaging systems free from the constraints imposed by traditional camera architectures. Due to advances in imaging hardware, fabrication techniques, and new algorithms, researchers have recently developed lensless imaging systems that are extremely compact and lightweight or able to image higher-dimensional quantities. Here we review these recent advances and describe the design principles and their effects that one should consider when developing and using lensless imaging systems.

     
    more » « less
  4. 3D phase imaging recovers an object’s volumetric refractive index from intensity and/or holographic measurements. Partially coherent methods, such as illumination-based differential phase contrast (DPC), are particularly simple to implement in a commercial brightfield microscope. 3D DPC acquires images at multiple focus positions and with different illumination source patterns in order to reconstruct 3D refractive index. Here, we present a practical extension of the 3D DPC method that does not require a precise motion stage for scanning the focus and uses optimized illumination patterns for improved performance. The user scans the focus by hand, using the microscope’s focus knob, and the algorithm self-calibrates the axial position to solve for the 3D refractive index of the sample through a computational inverse problem. We further show that the illumination patterns can be optimized by an end-to-end learning procedure. Combining these two, we demonstrate improved 3D DPC with a commercial microscope whose only hardware modification is LED array illumination.

     
    more » « less
  5. Deconvolution can be used to obtain sharp images or volumes from blurry or encoded measurements in imaging systems. Given knowledge of the system’s point spread function (PSF) over the field of view, a reconstruction algorithm can be used to recover a clear image or volume. Most deconvolution algorithms assume shift-invariance; however, in realistic systems, the PSF varies laterally and axially across the field of view due to aberrations or design. Shift-varying models can be used, but are often slow and computationally intensive. In this work, we propose a deep-learning-based approach that leverages knowledge about the system’s spatially varying PSFs for fast 2D and 3D reconstructions. Our approach, termed MultiWienerNet, uses multiple differentiable Wiener filters paired with a convolutional neural network to incorporate spatial variance. Trained using simulated data and tested on experimental data, our approach offers a625−<#comment/>1600×<#comment/>increase in speed compared to iterative methods with a spatially varying model, and outperforms existing deep-learning-based methods that assume shift invariance.

     
    more » « less
  6. Hyperspectral imaging is useful for applications ranging from medical diagnostics to agricultural crop monitoring; however, traditional scanning hyperspectral imagers are prohibitively slow and expensive for widespread adoption. Snapshot techniques exist but are often confined to bulky benchtop setups or have low spatio-spectral resolution. In this paper, we propose a novel, compact, and inexpensive computational camera for snapshot hyperspectral imaging. Our system consists of a tiled spectral filter array placed directly on the image sensor and a diffuser placed close to the sensor. Each point in the world maps to a unique pseudorandom pattern on the spectral filter array, which encodes multiplexed spatio-spectral information. By solving a sparsity-constrained inverse problem, we recover the hyperspectral volume with sub-super-pixel resolution. Our hyperspectral imaging framework is flexible and can be designed with contiguous or non-contiguous spectral filters that can be chosen for a given application. We provide theory for system design, demonstrate a prototype device, and present experimental results with high spatio-spectral resolution.

     
    more » « less
  7. Deep neural networks have emerged as effective tools for computational imaging, including quantitative phase microscopy of transparent samples. To reconstruct phase from intensity, current approaches rely on supervised learning with training examples; consequently, their performance is sensitive to a match of training and imaging settings. Here we propose a new approach to phase microscopy by using an untrained deep neural network for measurement formation, encapsulating the image prior and the system physics. Our approach does not require any training data and simultaneously reconstructs the phase and pupil-plane aberrations by fitting the weights of the network to the captured images. To demonstrate experimentally, we reconstruct quantitative phase from through-focus intensity images without knowledge of the aberrations.

     
    more » « less
  8. Abstract The last decade has seen the development of a wide set of tools, such as wavefront shaping, computational or fundamental methods, that allow us to understand and control light propagation in a complex medium, such as biological tissues or multimode fibers. A vibrant and diverse community is now working in this field, which has revolutionized the prospect of diffraction-limited imaging at depth in tissues. This roadmap highlights several key aspects of this fast developing field, and some of the challenges and opportunities ahead. 
    more » « less
  9. We propose an accurate and computationally efficient 3D scattering model, multi-layer Born (MLB), and use it to recover the 3D refractive index (RI) of thick biological samples. For inverse problems recovering the complex field of thick samples, weak scattering models (e.g., first Born) may fail or underestimate the RI, especially with a large index contrast. Multi-slice (MS) beam propagation methods model multiple scattering to provide more realistic reconstructions; however, MS does not properly account for highly oblique scattering, nor does it model backward scattering. Our proposed MLB model uses a first Born model at each of many slices, accurately capturing the oblique scattering effects and estimating the backward scattering process. When used in conjunction with an inverse solver, the model provides more accurate RI reconstructions for high-resolution phase tomography. Importantly, MLB retains a reasonable computation time that is critical for practical implementation with iterative inverse algorithms.

     
    more » « less